We a good story
Quick delivery in the UK

Bioprinting: Principles And Applications

About Bioprinting: Principles And Applications

At labs around the world, researchers have been experimenting with bioprinting, first just to see whether it was possible to push cells through a printhead without killing them (in most cases it is), and then trying to make cartilage, bone, skin, blood vessels, small bits of liver and other tissues. There are other ways to try to "engineer" tissue one involves creating a scaffold out of plastics or other materials and adding cells to it. In theory, at least, a bioprinter has advantages in manipulating control of the placement of cells and other components to mimic natural structures. But just as the claims made for 3-D printing technology sometimes exceed the reality, the field of bioprinting has seen its share of hype. The reality is that, although bioprinting researchers have made great strides, there are many formidable obstacles to overcome. Nobody who has any credibility claims they can print organs, or believes in their heart of hearts that that will happen in the next 20 years, but for operations like hip replacement, advance in Bio-printing has made customization of certain body parts possible. This book will start from the concept of Tissue Engineering, covering various approaches in Scaffolds for tissue engineering, Bioprinting techniques and Materials for bioprinting, Cell processing, 3D cell culture techniques, Computational design and simulation, multi-disciplinary approaches in bioprinting and finally cover the applications of bioprinting.

Show more
  • Language:
  • English
  • ISBN:
  • 9789814612104
  • Binding:
  • Hardback
  • Pages:
  • 296
  • Published:
  • January 29, 2015
  • Dimensions:
  • 233x182x19 mm.
Delivery: 2-4 weeks
Expected delivery: December 8, 2024

Description of Bioprinting: Principles And Applications

At labs around the world, researchers have been experimenting with bioprinting, first just to see whether it was possible to push cells through a printhead without killing them (in most cases it is), and then trying to make cartilage, bone, skin, blood vessels, small bits of liver and other tissues. There are other ways to try to "engineer" tissue one involves creating a scaffold out of plastics or other materials and adding cells to it. In theory, at least, a bioprinter has advantages in manipulating control of the placement of cells and other components to mimic natural structures. But just as the claims made for 3-D printing technology sometimes exceed the reality, the field of bioprinting has seen its share of hype. The reality is that, although bioprinting researchers have made great strides, there are many formidable obstacles to overcome. Nobody who has any credibility claims they can print organs, or believes in their heart of hearts that that will happen in the next 20 years, but for operations like hip replacement, advance in Bio-printing has made customization of certain body parts possible. This book will start from the concept of Tissue Engineering, covering various approaches in Scaffolds for tissue engineering, Bioprinting techniques and Materials for bioprinting, Cell processing, 3D cell culture techniques, Computational design and simulation, multi-disciplinary approaches in bioprinting and finally cover the applications of bioprinting.

User ratings of Bioprinting: Principles And Applications



Find similar books
The book Bioprinting: Principles And Applications can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.