We a good story
Quick delivery in the UK

Computer Vision Using Deep Learning

- Neural Network Architectures with Python and Keras

About Computer Vision Using Deep Learning

Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems. This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You'll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments. Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs. What You'll Learn Examine deep learning code and concepts to apply guiding principals to your own projects Classify and evaluate various architectures to better understand your options in various use cases Go behind the scenes of basic deep learning functions to find out how they work Who This Book Is For Professional practitioners working in the fields of software engineering and data science. A working knowledge of Python is strongly recommended. Students and innovators working on advanced degrees in areas related to computer vision and Deep Learning.

Show more
  • Language:
  • English
  • ISBN:
  • 9781484266151
  • Binding:
  • Paperback
  • Pages:
  • 308
  • Published:
  • February 14, 2021
  • Edition:
  • 1
  • Dimensions:
  • 155x235x0 mm.
  • Weight:
  • 510 g.
Delivery: 1-2 weeks
Expected delivery: January 4, 2025
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Computer Vision Using Deep Learning

Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems.
This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You'll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments.
Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs.

What You'll Learn
Examine deep learning code and concepts to apply guiding principals to your own projects
Classify and evaluate various architectures to better understand your options in various use cases
Go behind the scenes of basic deep learning functions to find out how they work
Who This Book Is For
Professional practitioners working in the fields of software engineering and data science. A working knowledge of Python is strongly recommended. Students and innovators working on advanced degrees in areas related to computer vision and Deep Learning.

User ratings of Computer Vision Using Deep Learning



Find similar books
The book Computer Vision Using Deep Learning can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.