We a good story
Quick delivery in the UK

Concepts and Techniques of Graph Neural Networks

About Concepts and Techniques of Graph Neural Networks

Recent advancements in graph neural networks have expanded their capacities and expressive power. Furthermore, practical applications have begun to emerge in a variety of fields including recommendation systems, fake news detection, traffic prediction, molecular structure in chemistry, antibacterial discovery physics simulations, and more. As a result, a boom of research at the juncture of graph theory and deep learning has revolutionized many areas of research. However, while graph neural networks have drawn a lot of attention, they still face many challenges when it comes to applying them to other domains, from a conceptual understanding of methodologies to scalability and interpretability in a real system. Concepts and Techniques of Graph Neural Networks provides a stepwise discussion, an exhaustive literature review, detailed analysis and discussion, rigorous experimentation results, and application-oriented approaches that are demonstrated with respect to applications of graph neural networks. The book also develops the understanding of concepts and techniques of graph neural networks and establishes the familiarity of different real applications in various domains for graph neural networks. Covering key topics such as graph data, social networks, deep learning, and graph clustering, this premier reference source is ideal for industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.

Show more
  • Language:
  • English
  • ISBN:
  • 9781668469033
  • Binding:
  • Hardback
  • Pages:
  • 272
  • Published:
  • May 21, 2023
  • Dimensions:
  • 221x19x286 mm.
  • Weight:
  • 954 g.
Delivery: 2-3 weeks
Expected delivery: January 25, 2025

Description of Concepts and Techniques of Graph Neural Networks

Recent advancements in graph neural networks have expanded their capacities and expressive power. Furthermore, practical applications have begun to emerge in a variety of fields including recommendation systems, fake news detection, traffic prediction, molecular structure in chemistry, antibacterial discovery physics simulations, and more. As a result, a boom of research at the juncture of graph theory and deep learning has revolutionized many areas of research. However, while graph neural networks have drawn a lot of attention, they still face many challenges when it comes to applying them to other domains, from a conceptual understanding of methodologies to scalability and interpretability in a real system. Concepts and Techniques of Graph Neural Networks provides a stepwise discussion, an exhaustive literature review, detailed analysis and discussion, rigorous experimentation results, and application-oriented approaches that are demonstrated with respect to applications of graph neural networks. The book also develops the understanding of concepts and techniques of graph neural networks and establishes the familiarity of different real applications in various domains for graph neural networks. Covering key topics such as graph data, social networks, deep learning, and graph clustering, this premier reference source is ideal for industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.

User ratings of Concepts and Techniques of Graph Neural Networks



Find similar books
The book Concepts and Techniques of Graph Neural Networks can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.