We a good story
Quick delivery in the UK

Cyber-Trolling Detection System

About Cyber-Trolling Detection System

Hate Speech and harassment are widespread in online communication, due to user¿sfreedom and anonymity and the lack of regulation governed by social media. Due to thiscyber trolling and bullying is major issue in a society. To overcome this problem, we canuse the ability of machine learning for hate speech detection to capture common propertiesfrom topic generic datasets and transfer this knowledge to recognize specificmanifestations of hate speech using NLP, ML and Analysis. Our main goal is to apply thissophisticated and efficient model on text data to get optimal and accurate results. We usedifferent machine learning and deep learning technique including multi modalapproaches. We use dataset that is divided into topic-specific like misogyny, sexism,racism, xenophobia, homophobia. Training a model on a combination of several (trainingsets from several) topic-specific datasets is more effective than training a model on atopic-generic dataset. Dataset can be gathered from various sources like from YouTubeAPI, Twitter API, web-scrapping or from various government sources. Our aim is toperform preprocessing and exploratory data analysis on collected data and deriveconclusion from it.

Show more
  • Language:
  • English
  • ISBN:
  • 9786207462537
  • Binding:
  • Paperback
  • Pages:
  • 52
  • Published:
  • January 31, 2024
  • Dimensions:
  • 150x4x220 mm.
  • Weight:
  • 96 g.
Delivery: 1-2 weeks
Expected delivery: December 4, 2024

Description of Cyber-Trolling Detection System

Hate Speech and harassment are widespread in online communication, due to user¿sfreedom and anonymity and the lack of regulation governed by social media. Due to thiscyber trolling and bullying is major issue in a society. To overcome this problem, we canuse the ability of machine learning for hate speech detection to capture common propertiesfrom topic generic datasets and transfer this knowledge to recognize specificmanifestations of hate speech using NLP, ML and Analysis. Our main goal is to apply thissophisticated and efficient model on text data to get optimal and accurate results. We usedifferent machine learning and deep learning technique including multi modalapproaches. We use dataset that is divided into topic-specific like misogyny, sexism,racism, xenophobia, homophobia. Training a model on a combination of several (trainingsets from several) topic-specific datasets is more effective than training a model on atopic-generic dataset. Dataset can be gathered from various sources like from YouTubeAPI, Twitter API, web-scrapping or from various government sources. Our aim is toperform preprocessing and exploratory data analysis on collected data and deriveconclusion from it.

User ratings of Cyber-Trolling Detection System



Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.