We a good story
Quick delivery in the UK

Data Mining Based Stream Mining Approach

About Data Mining Based Stream Mining Approach

The Clustering is one of the most important technique in data mining. It aims partitioning the data into groups of similar objects. That is refered to as clusters. This research compares the StreamKM++ algorithm with the existing work, such as AP, IAPKM and IAPNA. The StreamKM++ algorithm is a new clustering algorithm from the data stream and itto constructs a good clustering of the stream, using a small amount of memory and time.Many researchers have done their work with static clustering algorithm, but in real time the data is dynamic in nature. Such as blogs, web pages, audio and video, etc., Hence, the conventional static technique doesn't support in real time environment. In this work, the StreamKM++ algorithm is used which achieves high clustering performance over traditional AP, IAPKM and IAPNA. The experimental result shows StreamKM++ algorithm achieves the best result compared with existing work. It has increased the average accuracy rate and reduced the computational time, memory and number of iterations.

Show more
  • Language:
  • English
  • ISBN:
  • 9786207466627
  • Binding:
  • Paperback
  • Published:
  • February 20, 2024
  • Dimensions:
  • 152x229x5 mm.
  • Weight:
  • 141 g.
Delivery: 1-2 weeks
Expected delivery: November 30, 2024

Description of Data Mining Based Stream Mining Approach

The Clustering is one of the most important technique in data mining. It aims partitioning the data into groups of similar objects. That is refered to as clusters. This research compares the StreamKM++ algorithm with the existing work, such as AP, IAPKM and IAPNA. The StreamKM++ algorithm is a new clustering algorithm from the data stream and itto constructs a good clustering of the stream, using a small amount of memory and time.Many researchers have done their work with static clustering algorithm, but in real time the data is dynamic in nature. Such as blogs, web pages, audio and video, etc., Hence, the conventional static technique doesn't support in real time environment. In this work, the StreamKM++ algorithm is used which achieves high clustering performance over traditional AP, IAPKM and IAPNA. The experimental result shows StreamKM++ algorithm achieves the best result compared with existing work. It has increased the average accuracy rate and reduced the computational time, memory and number of iterations.

User ratings of Data Mining Based Stream Mining Approach



Find similar books
The book Data Mining Based Stream Mining Approach can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.