We a good story
Quick delivery in the UK

Data Mining

- Theories, Algorithms, and Examples

By Nong Ye
About Data Mining

New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms. The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures. The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.

Show more
  • Language:
  • English
  • ISBN:
  • 9781138073661
  • Binding:
  • Paperback
  • Pages:
  • 349
  • Published:
  • March 28, 2017
  • Dimensions:
  • 234x157x27 mm.
  • Weight:
  • 528 g.
Delivery: 1-2 weeks
Expected delivery: November 28, 2024

Description of Data Mining

New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms.
The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures.
The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.

User ratings of Data Mining



Find similar books
The book Data Mining can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.