We a good story
Quick delivery in the UK

Demystifying Machine Learning

About Demystifying Machine Learning

Machine learning has become a buzzword in today's technological landscape, and it is crucial for everyone, regardless of their background, to have a basic understanding of this concept. This subchapter aims to demystify machine learning and provide a comprehensive overview of its principles and applications. Whether you are a statistician, data scientist, or simply someone interested in statistical modeling, this content will equip you with the knowledge needed to comprehend and appreciate the power of machine learning. Machine learning is a branch of artificial intelligence that focuses on developing algorithms and statistical models that enable computers to learn from data and make predictions or decisions without being explicitly programmed. It involves the use of statistical techniques to analyze large datasets, identify patterns, and develop models that can generalize and make accurate predictions on new, unseen data. In this subchapter, we will delve into the fundamental concepts of machine learning, starting with the different types of learning algorithms. We will explore supervised learning, where models learn from labeled data to make predictions, and unsupervised learning, where models identify patterns and relationships in unlabeled data. We will also discuss semi-supervised learning and reinforcement learning, two other important branches of machine learning. Furthermore, we will explore the key steps involved in the machine learning process, including data preprocessing, feature selection, model training, evaluation, and deployment. We will emphasize the importance of data quality and the impact it has on the performance and reliability of machine learning models. Additionally, we will touch upon model evaluation metrics and techniques to prevent overfitting or underfitting. Throughout this subchapter, we will showcase real-world examples and applications of machine learning, ranging from image and speech recognition to recommendation systems and fraud detection. By understanding these practical applications, you will gain insights into how machine learning can revolutionize various industries and improve decision-making processes

Show more
  • Language:
  • English
  • ISBN:
  • 9798869048950
  • Binding:
  • Paperback
  • Pages:
  • 120
  • Published:
  • December 4, 2023
  • Dimensions:
  • 152x7x229 mm.
  • Weight:
  • 187 g.
Delivery: 1-2 weeks
Expected delivery: February 1, 2025

Description of Demystifying Machine Learning

Machine learning has become a buzzword in today's technological landscape, and it is crucial for everyone, regardless of their background, to have a basic understanding of this concept. This subchapter aims to demystify machine learning and provide a comprehensive overview of its principles and applications. Whether you are a statistician, data scientist, or simply someone interested in statistical modeling, this content will equip you with the knowledge needed to comprehend and appreciate the power of machine learning.
Machine learning is a branch of artificial intelligence that focuses on developing algorithms and statistical models that enable computers to learn from data and make predictions or decisions without being explicitly programmed. It involves the use of statistical techniques to analyze large datasets, identify patterns, and develop models that can generalize and make accurate predictions on new, unseen data.
In this subchapter, we will delve into the fundamental concepts of machine learning, starting with the different types of learning algorithms. We will explore supervised learning, where models learn from labeled data to make predictions, and unsupervised learning, where models identify patterns and relationships in unlabeled data. We will also discuss semi-supervised learning and reinforcement learning, two other important branches of machine learning.
Furthermore, we will explore the key steps involved in the machine learning process, including data preprocessing, feature selection, model training, evaluation, and deployment. We will emphasize the importance of data quality and the impact it has on the performance and reliability of machine learning models. Additionally, we will touch upon model evaluation metrics and techniques to prevent overfitting or underfitting.
Throughout this subchapter, we will showcase real-world examples and applications of machine learning, ranging from image and speech recognition to recommendation systems and fraud detection. By understanding these practical applications, you will gain insights into how machine learning can revolutionize various industries and improve decision-making processes

User ratings of Demystifying Machine Learning



Find similar books
The book Demystifying Machine Learning can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.