We a good story
Quick delivery in the UK

Designing Pathways for Net-Zero Greenhouse Gas Emission Plastics with Life Cycle Optimization

About Designing Pathways for Net-Zero Greenhouse Gas Emission Plastics with Life Cycle Optimization

Plastics are on the rise to conquer every area of modern human life but lead to increased pollution of nature, enormous oil consumption, and large-scale greenhouse gas emissions. Thus, to avoid climate change above 1.5¿C, net-zero greenhouse gas emission plastics are needed by the second half of this century. To reduce the greenhouse gas emissions associated with plastics, three circular technologies can be used: (1) chemical or mechanical recycling, (2) carbon capture and utilization, and (3) biomass utilization. However, current environmental assessments of these circular technologies focus solely on individual or partly combined circular technologies, are limited to regional scopes, and often apply inconsistent methodologies. Thus, it is currently unclear if net-zero emission plastics can actually be achieved with the current set of circular technologies. Furthermore, shifting from the linear to a circular economy is regarded as energy-intensive and costly, hindering strong policy implementation from fostering the transition to a circular economy. To assess if net-zero emission plastics can actually be achieved, this thesis builds and uses the first global, industry-wide and systematic bottom-up model for plastics production and waste treatment, representing the global life cycle greenhouse gas emissions of 90% of global plastic production. Using that model reveals that net-zero emission plastics can be achieved by combining biomass and CO2 utilization with an effective recycling rate of 70% while saving up to to 53% of energy and 288 billion USD compared to a fossil-based benchmark applying large-scale carbon capture and storage. Achieving the full potential of energy and cost savings while achieving netzero emissions requires the supply of biomass and CO2 at low cost, while cost of oil supply must be increased. To incentivize this shift, investment barriers for all available circular technologies have to be lowered by implementing consistent emission pricing schemes, using deposit systems for plastics to increase recyclability and stopping to subsidize fossil resources. Thus, this thesis shows that the greenhouse gas emission problem of plastics can be solved with technologies and solutions already available today.

Show more
  • Language:
  • English
  • ISBN:
  • 9783958864634
  • Binding:
  • Paperback
  • Pages:
  • 286
  • Published:
  • November 27, 2022
  • Dimensions:
  • 146x19x208 mm.
  • Weight:
  • 366 g.
  In stock
Delivery: 3-5 business days
Expected delivery: December 26, 2024
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Designing Pathways for Net-Zero Greenhouse Gas Emission Plastics with Life Cycle Optimization

Plastics are on the rise to conquer every area of modern human life but lead to increased pollution of nature, enormous oil consumption, and large-scale greenhouse gas emissions. Thus, to avoid climate change above 1.5¿C, net-zero greenhouse gas emission plastics are needed by the second half of this century. To reduce the greenhouse gas emissions associated with plastics, three circular technologies can be used: (1) chemical or mechanical recycling, (2) carbon capture and utilization, and (3) biomass utilization. However, current environmental assessments of these circular technologies focus solely on individual or partly combined circular technologies, are limited to regional scopes, and often apply inconsistent methodologies. Thus, it is currently unclear if net-zero emission plastics can actually be achieved with the current set of circular technologies. Furthermore, shifting from the linear to a circular economy is regarded as energy-intensive and costly, hindering strong policy implementation from fostering the transition to a circular economy.
To assess if net-zero emission plastics can actually be achieved, this thesis builds and uses the first global, industry-wide and systematic bottom-up model for plastics production and waste treatment, representing the global life cycle greenhouse gas emissions of 90% of global plastic production. Using that model reveals that net-zero emission plastics can be achieved by combining biomass and CO2 utilization with an effective recycling rate of 70% while saving up to to 53% of energy and 288 billion USD compared to a fossil-based benchmark applying large-scale carbon capture and storage. Achieving the full potential of energy and cost savings while achieving netzero emissions requires the supply of biomass and CO2 at low cost, while cost of oil supply must be increased. To incentivize this shift, investment barriers for all available circular technologies have to be lowered by implementing consistent emission pricing schemes, using deposit systems for plastics to increase recyclability and stopping to subsidize fossil resources. Thus, this thesis shows that the greenhouse gas emission problem of plastics can be solved with technologies and solutions already available today.

User ratings of Designing Pathways for Net-Zero Greenhouse Gas Emission Plastics with Life Cycle Optimization



Find similar books
The book Designing Pathways for Net-Zero Greenhouse Gas Emission Plastics with Life Cycle Optimization can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.