We a good story
Quick delivery in the UK

Digital Signal Processing with Kernel Methods

part of the Wiley - IEEE series

About Digital Signal Processing with Kernel Methods

A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM * Presents the necessary basic ideas from both digital signal processing and machine learning concepts * Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing * Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.

Show more
  • Language:
  • English
  • ISBN:
  • 9781118611791
  • Binding:
  • Hardback
  • Pages:
  • 672
  • Published:
  • January 25, 2018
  • Dimensions:
  • 251x177x36 mm.
  • Weight:
  • 1002 g.
Delivery: 2-4 weeks
Expected delivery: December 19, 2024

Description of Digital Signal Processing with Kernel Methods

A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems
Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research.
Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM
* Presents the necessary basic ideas from both digital signal processing and machine learning concepts
* Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing
* Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing
An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.

User ratings of Digital Signal Processing with Kernel Methods



Find similar books
The book Digital Signal Processing with Kernel Methods can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.