We a good story
Quick delivery in the UK

Electromagnetic Wave Absorbing Materials

About Electromagnetic Wave Absorbing Materials

Summary of materials, material design, and process methods for electromagnetic wave absorption and shielding in the electronics industry Electromagnetic Wave Absorbing Materials presents information on the most promising electromagnetic wave absorbing materials, with timely coverage of both conventional and novel materials including 1D, 2D, and 3D materials. This book enables readers to address the growing specification needs in the field through optimizing electromagnetic parameters and promoting interface polarization, two key properties for wireless technology in electronic applications. This book is part of the Wiley Series in Materials for Electronic and Optoelectronic Applications. Edited by three highly qualified academics with significant relevant research experience, Electromagnetic Wave Absorbing Materials includes discussions on: Materials including ferrites, graphene, carbon-based composite absorbers, SiC ceramics, MOFs, and meta-material based absorbers Recent advances in the field surrounding composite absorbers, conductive polymers, and ceramics, and other materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Applications including terrestrial and satellite communication (software radio, GPS, and satellite TV), environmental monitoring via satellite, and EMI shielding, as well as stealth applications Electromagnetic Wave Absorbing Materials is an essential reference on the subject for researchers and advanced students in the chemical, electronics, and communications industries, as well as R&D scientists at companies such as Apple, HUAWEI, and China Aerospace Science and Technology Corp (CASC).

Show more
  • Language:
  • English
  • ISBN:
  • 9781119699347
  • Binding:
  • Hardback
  • Pages:
  • 272
  • Published:
  • September 25, 2024
  • Dimensions:
  • 176x250x20 mm.
  • Weight:
  • 680 g.
Delivery: 2-4 weeks
Expected delivery: September 17, 2025

Description of Electromagnetic Wave Absorbing Materials

Summary of materials, material design, and process methods for electromagnetic wave absorption and shielding in the electronics industry Electromagnetic Wave Absorbing Materials presents information on the most promising electromagnetic wave absorbing materials, with timely coverage of both conventional and novel materials including 1D, 2D, and 3D materials. This book enables readers to address the growing specification needs in the field through optimizing electromagnetic parameters and promoting interface polarization, two key properties for wireless technology in electronic applications. This book is part of the Wiley Series in Materials for Electronic and Optoelectronic Applications. Edited by three highly qualified academics with significant relevant research experience, Electromagnetic Wave Absorbing Materials includes discussions on: Materials including ferrites, graphene, carbon-based composite absorbers, SiC ceramics, MOFs, and meta-material based absorbers Recent advances in the field surrounding composite absorbers, conductive polymers, and ceramics, and other materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Applications including terrestrial and satellite communication (software radio, GPS, and satellite TV), environmental monitoring via satellite, and EMI shielding, as well as stealth applications Electromagnetic Wave Absorbing Materials is an essential reference on the subject for researchers and advanced students in the chemical, electronics, and communications industries, as well as R&D scientists at companies such as Apple, HUAWEI, and China Aerospace Science and Technology Corp (CASC).

User ratings of Electromagnetic Wave Absorbing Materials



Find similar books
The book Electromagnetic Wave Absorbing Materials can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.