We a good story
Quick delivery in the UK

Experimental and Computational Heat Transfer Analysis of Heat Sink

Experimental and Computational Heat Transfer Analysis of Heat SinkBy Surendra Singh Yadav
About Experimental and Computational Heat Transfer Analysis of Heat Sink

Proper dissipation of thermal energy from a system is always a requirement for many equipment and industries. Any device that runs using external power source always generates heat. The generated heat in such systems must be expelled to the surrounding. Maximizing the surface area of the devices generally enhances the cooling rate. However, it makes the system bulky. Therefore, a proper utilization of the surface area of the system is an important parameter to have an efficient heat dissipation system. It was always desirable to have a heat sink in the all devices that occupy minimum space with maximum effectiveness. The present work analyse conjugate heat transfer physics in a 3-D system of aluminium pin fins, with air as the working fluid. A finite volume solver, ANSYS Fluent has been used in simulating a staggered pin fin arrangement placed over a base plate. The solver is validated using the experimental data. The thermal analysis has been performed on fins with various cross sections. Consideration is given to fins having circular, hexagonal, pentagonal, triangular and drop-shaped cross sections with various inlet velocities.

Show more
  • Language:
  • English
  • ISBN:
  • 9786207452699
  • Binding:
  • Paperback
  • Pages:
  • 52
  • Published:
  • January 2, 2024
  • Dimensions:
  • 150x4x220 mm.
  • Weight:
  • 96 g.
Delivery: 1-2 weeks
Expected delivery: October 12, 2024

Description of Experimental and Computational Heat Transfer Analysis of Heat Sink

Proper dissipation of thermal energy from a system is always a requirement for many equipment and industries. Any device that runs using external power source always generates heat. The generated heat in such systems must be expelled to the surrounding. Maximizing the surface area of the devices generally enhances the cooling rate. However, it makes the system bulky. Therefore, a proper utilization of the surface area of the system is an important parameter to have an efficient heat dissipation system. It was always desirable to have a heat sink in the all devices that occupy minimum space with maximum effectiveness. The present work analyse conjugate heat transfer physics in a 3-D system of aluminium pin fins, with air as the working fluid. A finite volume solver, ANSYS Fluent has been used in simulating a staggered pin fin arrangement placed over a base plate. The solver is validated using the experimental data. The thermal analysis has been performed on fins with various cross sections. Consideration is given to fins having circular, hexagonal, pentagonal, triangular and drop-shaped cross sections with various inlet velocities.

User ratings of Experimental and Computational Heat Transfer Analysis of Heat Sink



Find similar books
The book Experimental and Computational Heat Transfer Analysis of Heat Sink can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.