We a good story
Quick delivery in the UK

Introducao a Teoria da Homotopia Abstrata

About Introducao a Teoria da Homotopia Abstrata

Decidir quando dois espaços topológicos dados são ou não homeomorfos é uma tarefa árdua. De outro lado, o problema de classificação de estruturas algébricas é, ao menos em primeira instância, mais simples. A Topologia Algébrica visa construir regras, chamadas de functores, que nos permitam atacar o problema de classificação topológica no contexto algébrico. Tais functores se dividem em duas classes: os grupos de homotopia e as teorias de cohomologia. Ambos possuem a propriedade comum de serem invariantes por homotopia e de possuírem sequências exatas longas associadas. Por outro lado, grupos de homotopia são puramente topológicos, enquanto que as teorias de cohomologia possuem um passo algébrico intermediário, ligado à Álgebra Homológica, o que as torna muito mais fáceis de computar. Esse paralelo entre topologia e álgebra sugere a existência de uma linguagem mais abstrata capaz de unificar teoria da homotopia para espaços topológicos e Álgebra Homológica. Esta linguagem, cujos fundamentos remontam os trabalhos de Quillen e Grothendieck, é precisamente o assunto deste livro.

Show more
  • Language:
  • Portuguese
  • ISBN:
  • 9786202182201
  • Binding:
  • Paperback
  • Pages:
  • 216
  • Published:
  • February 11, 2018
  • Dimensions:
  • 229x152x12 mm.
  • Weight:
  • 322 g.
Delivery: 1-2 weeks
Expected delivery: December 12, 2024
Extended return policy to January 30, 2025

Description of Introducao a Teoria da Homotopia Abstrata

Decidir quando dois espaços topológicos dados são ou não homeomorfos é uma tarefa árdua. De outro lado, o problema de classificação de estruturas algébricas é, ao menos em primeira instância, mais simples. A Topologia Algébrica visa construir regras, chamadas de functores, que nos permitam atacar o problema de classificação topológica no contexto algébrico. Tais functores se dividem em duas classes: os grupos de homotopia e as teorias de cohomologia. Ambos possuem a propriedade comum de serem invariantes por homotopia e de possuírem sequências exatas longas associadas. Por outro lado, grupos de homotopia são puramente topológicos, enquanto que as teorias de cohomologia possuem um passo algébrico intermediário, ligado à Álgebra Homológica, o que as torna muito mais fáceis de computar. Esse paralelo entre topologia e álgebra sugere a existência de uma linguagem mais abstrata capaz de unificar teoria da homotopia para espaços topológicos e Álgebra Homológica. Esta linguagem, cujos fundamentos remontam os trabalhos de Quillen e Grothendieck, é precisamente o assunto deste livro.

User ratings of Introducao a Teoria da Homotopia Abstrata



Find similar books
The book Introducao a Teoria da Homotopia Abstrata can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.