We a good story
Quick delivery in the UK

Machine Learning Methods

By Hang Li
About Machine Learning Methods

This book provides a comprehensive and systematic introduction to the principal machine learning methods, covering both supervised and unsupervised learning methods. It discusses essential methods of classification and regression in supervised learning, such as decision trees, perceptrons, support vector machines, maximum entropy models, logistic regression models and multiclass classification, as well as methods applied in supervised learning, like the hidden Markov model and conditional random fields. In the context of unsupervised learning, it examines clustering and other problems as well as methods such as singular value decomposition, principal component analysis and latent semantic analysis. As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic principles, underlying concepts and algorithms enable readers to grasp basic techniques, while the rigorous mathematical derivations and specific examples included offer valuable insights into machine learning.

Show more
  • Language:
  • English
  • ISBN:
  • 9789819939169
  • Binding:
  • Hardback
  • Pages:
  • 532
  • Published:
  • December 5, 2023
  • Edition:
  • 2024
  • Dimensions:
  • 243x160x39 mm.
  • Weight:
  • 962 g.
  In stock
Delivery: 3-5 business days
Expected delivery: December 26, 2024
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Machine Learning Methods

This book provides a comprehensive and systematic introduction to the principal machine learning methods, covering both supervised and unsupervised learning methods. It discusses essential methods of classification and regression in supervised learning, such as decision trees, perceptrons, support vector machines, maximum entropy models, logistic regression models and multiclass classification, as well as methods applied in supervised learning, like the hidden Markov model and conditional random fields. In the context of unsupervised learning, it examines clustering and other problems as well as methods such as singular value decomposition, principal component analysis and latent semantic analysis. As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic principles, underlying concepts and algorithms enable readers to grasp basic techniques, while the rigorous mathematical derivations and specific examples included offer valuable insights into machine learning.

User ratings of Machine Learning Methods



Find similar books
The book Machine Learning Methods can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.