We a good story
Quick delivery in the UK

Magnetocaloric Heat Pumps

About Magnetocaloric Heat Pumps

There are a number of ways in which magnetocaloric heat pumps (MCHPs) improve upon conventional vapor compression heat pumps (VCHPs) that are currently used for space heating. More energy is saved by using MCHPs, and they don't produce greenhouse gases or deplete the ozone layer. Magnetocaloric heat pumps (MCHPs) rely on the phenomenon of reversible temperature change caused by an applied magnetic field. Magnetocaloric materials experience this effect when the magnetic field strength around them is varied. As the field is increased, the temperature of the substance rises. When the field is reduced, the temperature of the substance decreases. By pumping a coolant fluid through a regenerator made of magnetocaloric material, MCHPs employ this phenomenon to simultaneously heat and cool a building. When the magnetic field is increased, the coolant fluid runs through the regenerator and is heated. The warm coolant fluid is subsequently distributed throughout the building's central heating system. The coolant fluid is cooled when the magnetic field is weakened, and then it is pushed through the cooling system of the building. The heating and cooling industries could see a dramatic shift in the direction of MCHPs, which are now in the research and development stages. Homeowners and businesses can benefit from the lower energy costs associated with these systems because they are more energy efficient than VCHPs. Also, unlike VCHPs, they don't release any harmful substances into the atmosphere or deplete the ozone layer.

Show more
  • Language:
  • English
  • ISBN:
  • 9788119669172
  • Binding:
  • Paperback
  • Pages:
  • 88
  • Published:
  • October 4, 2023
  • Dimensions:
  • 152x5x229 mm.
  • Weight:
  • 142 g.
Delivery: 1-2 weeks
Expected delivery: February 1, 2025

Description of Magnetocaloric Heat Pumps

There are a number of ways in which magnetocaloric heat pumps (MCHPs) improve upon conventional vapor compression heat pumps (VCHPs) that are currently used for space heating. More energy is saved by using MCHPs, and they don't produce greenhouse gases or deplete the ozone layer.
Magnetocaloric heat pumps (MCHPs) rely on the phenomenon of reversible temperature change caused by an applied magnetic field. Magnetocaloric materials experience this effect when the magnetic field strength around them is varied. As the field is increased, the temperature of the substance rises. When the field is reduced, the temperature of the substance decreases.
By pumping a coolant fluid through a regenerator made of magnetocaloric material, MCHPs employ this phenomenon to simultaneously heat and cool a building. When the magnetic field is increased, the coolant fluid runs through the regenerator and is heated. The warm coolant fluid is subsequently distributed throughout the building's central heating system. The coolant fluid is cooled when the magnetic field is weakened, and then it is pushed through the cooling system of the building.
The heating and cooling industries could see a dramatic shift in the direction of MCHPs, which are now in the research and development stages. Homeowners and businesses can benefit from the lower energy costs associated with these systems because they are more energy efficient than VCHPs. Also, unlike VCHPs, they don't release any harmful substances into the atmosphere or deplete the ozone layer.

User ratings of Magnetocaloric Heat Pumps



Find similar books
The book Magnetocaloric Heat Pumps can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.