We a good story
Quick delivery in the UK

MANAGING DATASETS & MODELS

About MANAGING DATASETS & MODELS

This book contains a fast-paced introduction to data-related tasks in preparation for training models on datasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset. Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading. Features: Covers extensive topics related to cleaning datasets and working with models Includes Python-based code samples and a separate chapter on Matplotlib and Seaborn Features companion files with source code, datasets, and figures from the book

Show more
  • Language:
  • Unknown
  • ISBN:
  • 9781683929529
  • Binding:
  • Paperback
  • Pages:
  • 368
  • Published:
  • February 28, 2023
  • Dimensions:
  • 178x21x229 mm.
  • Weight:
  • 653 g.
Delivery: 1-2 weeks
Expected delivery: March 2, 2025

Description of MANAGING DATASETS & MODELS

This book contains a fast-paced introduction to data-related tasks in preparation for training models on datasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset.
Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading.
Features:
Covers extensive topics related to cleaning datasets and working with models
Includes Python-based code samples and a separate chapter on Matplotlib and Seaborn
Features companion files with source code, datasets, and figures from the book

User ratings of MANAGING DATASETS & MODELS



Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.