We a good story
Quick delivery in the UK

Organocatalysis for Spiro-Cyclic Assembly

About Organocatalysis for Spiro-Cyclic Assembly

Organocatalysis is a promising field of research that has led to the development of many efficient and eco-friendly synthetic methods. Among the different applications of organocatalysis, spirocyclic assembly is of particular interest, as spirocyclic compounds are an important class of organic molecules with a wide range of biological and pharmaceutical activities. The Tamura reaction and 1,3-dipolar cycloaddition are two organocatalytic reactions that have been extensively used for spirocyclic assembly. Electron deficient alkenes are commonly used in these reactions, as they can undergo cycloaddition reactions with dipolarophiles to form a range of spirocyclic compounds. The use of organic catalysts in these reactions has many advantages over traditional metal-based catalysts, including low toxicity, low cost, and easy handling. In addition, organocatalysts can offer high enantioselectivity in many cases, which is crucial in the synthesis of biologically active compounds. Organocatalytic spirocyclic assembly involves the use of various chemical reactions, including Michael addition, acylation, alkylation, Mannich reaction, aldol reaction, Robinson annulation, and many others. The reaction conditions, catalysts, and substrates can all be optimized to achieve high yields and selectivity. The use of chiral organocatalysts can also lead to the synthesis of enantiomerically pure spirocyclic compounds. Lewis base and Brønsted base catalysis are the two main types of organocatalysis used in spirocyclic assembly. Both types of catalysis can offer unique advantages depending on the reaction conditions and substrates used. Moreover, the mechanism of organocatalytic reactions can be elucidated by various techniques, such as NMR spectroscopy, X-ray crystallography, and kinetic studies. The development of efficient and green methods for spirocyclic assembly is an important area of research, as it can lead to the synthesis of novel and biologically active compounds. Organocatalysis is a promising field in this regard, as it offers many advantages over traditional metal-based catalysis. Furthermore, the use of organocatalysts can lead to the development of new reactions and the modification of existing ones, thus expanding the toolbox of synthetic methods available to organic chemists. The work of RaviKiran Donthi and his colleagues in this field is an important contribution to the ongoing efforts to develop efficient and eco-friendly methods for spirocyclic assembly.

Show more
  • Language:
  • English
  • ISBN:
  • 9783860910184
  • Binding:
  • Paperback
  • Pages:
  • 206
  • Published:
  • October 11, 2023
  • Dimensions:
  • 152x11x229 mm.
  • Weight:
  • 307 g.
Delivery: 1-2 weeks
Expected delivery: January 2, 2025
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Organocatalysis for Spiro-Cyclic Assembly

Organocatalysis is a promising field of research that has led to the development of many efficient and eco-friendly synthetic methods. Among the different applications of organocatalysis, spirocyclic assembly is of particular interest, as spirocyclic compounds are an important class of organic molecules with a wide range of biological and pharmaceutical activities. The Tamura reaction and 1,3-dipolar cycloaddition are two organocatalytic reactions that have been extensively used for spirocyclic assembly. Electron deficient alkenes are commonly used in these reactions, as they can undergo cycloaddition reactions with dipolarophiles to form a range of spirocyclic compounds. The use of organic catalysts in these reactions has many advantages over traditional metal-based catalysts, including low toxicity, low cost, and easy handling. In addition, organocatalysts can offer high enantioselectivity in many cases, which is crucial in the synthesis of biologically active compounds. Organocatalytic spirocyclic assembly involves the use of various chemical reactions, including Michael addition, acylation, alkylation, Mannich reaction, aldol reaction, Robinson annulation, and many others. The reaction conditions, catalysts, and substrates can all be optimized to achieve high yields and selectivity. The use of chiral organocatalysts can also lead to the synthesis of enantiomerically pure spirocyclic compounds. Lewis base and Brønsted base catalysis are the two main types of organocatalysis used in spirocyclic assembly. Both types of catalysis can offer unique advantages depending on the reaction conditions and substrates used. Moreover, the mechanism of organocatalytic reactions can be elucidated by various techniques, such as NMR spectroscopy, X-ray crystallography, and kinetic studies. The development of efficient and green methods for spirocyclic assembly is an important area of research, as it can lead to the synthesis of novel and biologically active compounds. Organocatalysis is a promising field in this regard, as it offers many advantages over traditional metal-based catalysis. Furthermore, the use of organocatalysts can lead to the development of new reactions and the modification of existing ones, thus expanding the toolbox of synthetic methods available to organic chemists. The work of RaviKiran Donthi and his colleagues in this field is an important contribution to the ongoing efforts to develop efficient and eco-friendly methods for spirocyclic assembly.

User ratings of Organocatalysis for Spiro-Cyclic Assembly



Find similar books
The book Organocatalysis for Spiro-Cyclic Assembly can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.