We a good story
Quick delivery in the UK

Practicing Trustworthy Machine Learning

About Practicing Trustworthy Machine Learning

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world. You'll learn: Methods to explain ML models and their outputs to stakeholders How to recognize and fix fairness concerns and privacy leaks in an ML pipeline How to develop ML systems that are robust and secure against malicious attacks Important systemic considerations, like how to manage trust debt and which ML obstacles require human intervention

Show more
  • Language:
  • English
  • ISBN:
  • 9781098120276
  • Binding:
  • Paperback
  • Pages:
  • 350
  • Published:
  • January 12, 2023
  • Dimensions:
  • 180x230x15 mm.
  • Weight:
  • 535 g.
  In stock
Delivery: 3-5 business days
Expected delivery: December 5, 2024

Description of Practicing Trustworthy Machine Learning

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world. You'll learn: Methods to explain ML models and their outputs to stakeholders How to recognize and fix fairness concerns and privacy leaks in an ML pipeline How to develop ML systems that are robust and secure against malicious attacks Important systemic considerations, like how to manage trust debt and which ML obstacles require human intervention

User ratings of Practicing Trustworthy Machine Learning



Find similar books
The book Practicing Trustworthy Machine Learning can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.