We a good story
Quick delivery in the UK

Quantum Transport in Interacting Nanojunctions

- A Density Matrix Approach

About Quantum Transport in Interacting Nanojunctions

This book serves as an introduction to the growing field of quantum many-body transport in interacting nanojunctions. It delves into a theoretical approach based on a general density-matrix formulation for open quantum systems. In the book, relevant transport observables, like the current or its higher order cumulants, are obtained by evaluating quantum statistical averages. This approach requires the knowledge of the reduced density matrix of the interacting nanosystems. The formulation for addressing transport problems, based on the evolution of the reduced density operator in Liouville space, is highly versatile. It enables the treatment of charge and spin transport across various realistic nanostructures. Topics encompass standard Coulomb blockade, cotunneling phenomena in quantum dots, vibrational and Franck-Condon effects in molecular junctions, as well as many-body interference observed in double quantum dots or carbon nanotubes. Derived from lectures tailored for graduate and advanced students at the University of Regensburg in Germany, this book is enriched with exercises and step-by-step derivations.

Show more
  • Language:
  • English
  • ISBN:
  • 9783031556180
  • Binding:
  • Paperback
  • Published:
  • August 12, 2024
  • Dimensions:
  • 156x234x31 mm.
  • Weight:
  • 821 g.
Delivery: 1-2 weeks
Expected delivery: December 4, 2024

Description of Quantum Transport in Interacting Nanojunctions

This book serves as an introduction to the growing field of quantum many-body transport in interacting nanojunctions. It delves into a theoretical approach based on a general density-matrix formulation for open quantum systems. In the book, relevant transport observables, like the current or its higher order cumulants, are obtained by evaluating quantum statistical averages. This approach requires the knowledge of the reduced density matrix of the interacting nanosystems.
The formulation for addressing transport problems, based on the evolution of the reduced density operator in Liouville space, is highly versatile. It enables the treatment of charge and spin transport across various realistic nanostructures. Topics encompass standard Coulomb blockade, cotunneling phenomena in quantum dots, vibrational and Franck-Condon effects in molecular junctions, as well as many-body interference observed in double quantum dots or carbon nanotubes.
Derived from lectures tailored for graduate and advanced students at the University of Regensburg in Germany, this book is enriched with exercises and step-by-step derivations.

User ratings of Quantum Transport in Interacting Nanojunctions



Find similar books
The book Quantum Transport in Interacting Nanojunctions can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.