We a good story
Quick delivery in the UK

Representation in Machine Learning

About Representation in Machine Learning

This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book. In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques¿ effectiveness.

Show more
  • Language:
  • English
  • ISBN:
  • 9789811979071
  • Binding:
  • Paperback
  • Pages:
  • 104
  • Published:
  • January 20, 2023
  • Edition:
  • 23001
  • Dimensions:
  • 155x7x235 mm.
  • Weight:
  • 172 g.
Delivery: 2-4 weeks
Expected delivery: January 26, 2025
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Representation in Machine Learning

This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book.
In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques¿ effectiveness.

User ratings of Representation in Machine Learning



Find similar books
The book Representation in Machine Learning can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.