We a good story
Quick delivery in the UK

Sistema di rilevamento del cyber-trolling

About Sistema di rilevamento del cyber-trolling

L'Hate Speech e le molestie sono molto diffuse nella comunicazione online, a causa della libertà e dell'anonimato degli utenti e della mancanza di regolamentazione dei social media. Per questo motivo, il trolling e il bullismo informatico sono un problema importante per la società. Per superare questo problema, possiamo utilizzare la capacità dell'apprendimento automatico per il rilevamento dei discorsi d'odio per catturare proprietà comuni da insiemi di dati generici e trasferire questa conoscenza per riconoscere manifestazioni specifiche di discorsi d'odio utilizzando NLP, ML e analisi. Il nostro obiettivo principale è applicare questo modello sofisticato ed efficiente ai dati testuali per ottenere risultati ottimali e accurati. Abbiamo utilizzato diverse tecniche di machine learning e deep learning, tra cui approcci multimodali. Abbiamo utilizzato un set di dati suddiviso in argomenti specifici come misoginia, sessismo, razzismo, xenofobia e omofobia. L'addestramento di un modello su una combinazione di diversi dataset (trainingset da diversi) topic-specific è più efficace dell'addestramento di un modello su un dataset generico atopico. I dataset possono essere raccolti da varie fonti come YouTubeAPI, Twitter API, web-scrapping o da varie fonti governative. Il nostro obiettivo è quello di eseguire una pre-elaborazione e un'analisi esplorativa dei dati raccolti e di trarne delle conclusioni,

Show more
  • Language:
  • Italian
  • ISBN:
  • 9786207137770
  • Binding:
  • Paperback
  • Pages:
  • 52
  • Published:
  • February 25, 2024
  • Dimensions:
  • 150x4x220 mm.
  • Weight:
  • 96 g.
Delivery: 1-2 weeks
Expected delivery: December 4, 2024

Description of Sistema di rilevamento del cyber-trolling

L'Hate Speech e le molestie sono molto diffuse nella comunicazione online, a causa della libertà e dell'anonimato degli utenti e della mancanza di regolamentazione dei social media. Per questo motivo, il trolling e il bullismo informatico sono un problema importante per la società. Per superare questo problema, possiamo utilizzare la capacità dell'apprendimento automatico per il rilevamento dei discorsi d'odio per catturare proprietà comuni da insiemi di dati generici e trasferire questa conoscenza per riconoscere manifestazioni specifiche di discorsi d'odio utilizzando NLP, ML e analisi. Il nostro obiettivo principale è applicare questo modello sofisticato ed efficiente ai dati testuali per ottenere risultati ottimali e accurati. Abbiamo utilizzato diverse tecniche di machine learning e deep learning, tra cui approcci multimodali. Abbiamo utilizzato un set di dati suddiviso in argomenti specifici come misoginia, sessismo, razzismo, xenofobia e omofobia. L'addestramento di un modello su una combinazione di diversi dataset (trainingset da diversi) topic-specific è più efficace dell'addestramento di un modello su un dataset generico atopico. I dataset possono essere raccolti da varie fonti come YouTubeAPI, Twitter API, web-scrapping o da varie fonti governative. Il nostro obiettivo è quello di eseguire una pre-elaborazione e un'analisi esplorativa dei dati raccolti e di trarne delle conclusioni,

User ratings of Sistema di rilevamento del cyber-trolling



Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.