We a good story
Quick delivery in the UK

Space Nuclear Radioisotope Systems

About Space Nuclear Radioisotope Systems

For operating in severe environments, long life and reliability, radioisotope power systems have proven to be the most successful of all space power sources. Two Voyager missions launched in 1977 to study Jupiter, Saturn, Uranus, Neptune, and their satellites, rings and magnetic fields and continuing to the heliosphere region are still functioning over thirty years later. Radioisotope power systems have been used on the Moon, exploring the planets, and exiting our solar system. There success is a tribute to the outstanding engineering, quality control and attention to details that went into the design and production of radioisotope power generation units. Space nuclear radioisotope systems take the form of using the thermal energy from the decay of radioisotopes and converting this energy to electric power. Reliability and safety are of prime importance. Mission success depends on the ability of being able to safely launch the systems and on having sufficient electrical power over the life of the mission. Graceful power degradation over the life of a mission is acceptable as long as it is within predictable limits. Electrical power conversion systems with inherent redundancy, such as thermoelectric conversion systems, have been favored to date. Also, radioactive decay heat has been used to maintain temperatures in spacecraft at acceptable conditions for other components. This book describes how radioisotope systems work, the requirements and safety design considerations, the various systems that have been developed, and their operational history.

Show more
  • Language:
  • English
  • ISBN:
  • 9780974144320
  • Binding:
  • Paperback
  • Pages:
  • 166
  • Published:
  • June 30, 2011
  • Dimensions:
  • 216x9x280 mm.
  • Weight:
  • 436 g.
Delivery: 1-2 weeks
Expected delivery: December 11, 2024

Description of Space Nuclear Radioisotope Systems

For operating in severe environments, long life and reliability, radioisotope power systems have proven to be the most successful of all space power sources. Two Voyager missions launched in 1977 to study Jupiter, Saturn, Uranus, Neptune, and their satellites, rings and magnetic fields and continuing to the heliosphere region are still functioning over thirty years later. Radioisotope power systems have been used on the Moon, exploring the planets, and exiting our solar system. There success is a tribute to the outstanding engineering, quality control and attention to details that went into the design and production of radioisotope power generation units.
Space nuclear radioisotope systems take the form of using the thermal energy from the decay of radioisotopes and converting this energy to electric power. Reliability and safety are of prime importance. Mission success depends on the ability of being able to safely launch the systems and on having sufficient electrical power over the life of the mission. Graceful power degradation over the life of a mission is acceptable as long as it is within predictable limits. Electrical power conversion systems with inherent redundancy, such as thermoelectric conversion systems, have been favored to date. Also, radioactive decay heat has been used to maintain temperatures in spacecraft at acceptable conditions for other components.
This book describes how radioisotope systems work, the requirements and safety design considerations, the various systems that have been developed, and their operational history.

User ratings of Space Nuclear Radioisotope Systems



Find similar books
The book Space Nuclear Radioisotope Systems can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.