We a good story
Quick delivery in the UK

The Alisa Shape Module

- Adaptive Shape Recognition Using a Radial Feature Token

About The Alisa Shape Module

Shape classification is a challenging image processing problem because shapes can occur in any position, at any orientation, and at any scale in an image. Shapes can also be obscured by gaps in their boundaries, occlusions, and noise. General shape classifiers often suffer from low precision, and specialized shape classifiers rely on specific features, like vertices or connected boundaries, making them difficult to generalize. The objective of this research is to design, implement, and test a general, high-precision two-dimensional shape classifier that is invariant to translation, scale, and rotation, as well as robust to gaps in the shape boundary, occlusions, and noise. To achieve this objective, the radial feature token (RFT) is implemented as the ALISA Shape Module, which learns to classify shapes in ALISA geometry maps derived from a supervised set of training images. These learned shapes are stored as a set of vectors that are then used to classify shapes in test images. Experiments have demonstrated that this method can learn to classify general shapes from small training sets, as well as effectively classify similar shapes independent of their position, scale, and orientation. The Shape Module is also robust to gaps in shape boundaries, occlusions, and noise. The Shape Module is also shown to outperform some established shape recognition techniques, such as the Generalized Hough Transform.

Show more
  • Language:
  • English
  • ISBN:
  • 9781581121520
  • Binding:
  • Paperback
  • Pages:
  • 344
  • Published:
  • June 30, 2002
  • Dimensions:
  • 140x216x20 mm.
  • Weight:
  • 435 g.
Delivery: 1-2 weeks
Expected delivery: December 13, 2024
Extended return policy to January 30, 2025

Description of The Alisa Shape Module

Shape classification is a challenging image processing problem because shapes can occur in any position, at any orientation, and at any scale in an image. Shapes can also be obscured by gaps in their boundaries, occlusions, and noise. General shape classifiers often suffer from low precision, and specialized shape classifiers rely on specific features, like vertices or connected boundaries, making them difficult to generalize. The objective of this research is to design, implement, and test a general, high-precision two-dimensional shape classifier that is invariant to translation, scale, and rotation, as well as robust to gaps in the shape boundary, occlusions, and noise. To achieve this objective, the radial feature token (RFT) is implemented as the ALISA Shape Module, which learns to classify shapes in ALISA geometry maps derived from a supervised set of training images. These learned shapes are stored as a set of vectors that are then used to classify shapes in test images. Experiments have demonstrated that this method can learn to classify general shapes from small training sets, as well as effectively classify similar shapes independent of their position, scale, and orientation. The Shape Module is also robust to gaps in shape boundaries, occlusions, and noise. The Shape Module is also shown to outperform some established shape recognition techniques, such as the Generalized Hough Transform.

User ratings of The Alisa Shape Module



Find similar books
The book The Alisa Shape Module can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.