We a good story
Quick delivery in the UK

The Theory of Zeta-Functions of Root Systems

About The Theory of Zeta-Functions of Root Systems

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell¿Tornheim multiple zeta-functions, and Euler¿Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten¿s volume formula is provided. It is shown that various relations among special values of Euler¿Zagier multiple zeta-functions¿which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier¿s conjecture¿are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.

Show more
  • Language:
  • English
  • ISBN:
  • 9789819909094
  • Binding:
  • Hardback
  • Pages:
  • 424
  • Published:
  • January 2, 2024
  • Edition:
  • 24001
  • Dimensions:
  • 160x29x241 mm.
  • Weight:
  • 799 g.
Delivery: 2-4 weeks
Expected delivery: January 26, 2025
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of The Theory of Zeta-Functions of Root Systems

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell¿Tornheim multiple zeta-functions, and Euler¿Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups.
The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten¿s volume formula is provided. It is shown that various relations among special values of Euler¿Zagier multiple zeta-functions¿which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier¿s conjecture¿are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.

User ratings of The Theory of Zeta-Functions of Root Systems



Find similar books
The book The Theory of Zeta-Functions of Root Systems can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.