We a good story
Quick delivery in the UK

Training Data for Machine Learning

About Training Data for Machine Learning

Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. Data science professionals and machine learning engineers will gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system

Show more
  • Language:
  • English
  • ISBN:
  • 9781492094524
  • Binding:
  • Paperback
  • Pages:
  • 329
  • Published:
  • December 18, 2023
  • Dimensions:
  • 178x232x20 mm.
  • Weight:
  • 580 g.
  In stock
Delivery: 3-5 business days
Expected delivery: December 12, 2024
Extended return policy to January 30, 2025

Description of Training Data for Machine Learning

Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. Data science professionals and machine learning engineers will gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system

User ratings of Training Data for Machine Learning



Find similar books
The book Training Data for Machine Learning can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.