We a good story
Quick delivery in the UK

Uncertain Models and Robust Control

About Uncertain Models and Robust Control

I Introduction.- 1 Introductory Survey.- 2 Vector Norm. Matrix Norm. Matrix Measure.- 3 FUnctional Analysis, Function Norms and Control Signals.- II Differential Sensitivity. Small-Scale Perturbation.- 4 Kronecker Calculus in Control Theory.- 5 Analysis Using Matrices and Control Theory 79.- 6 Eigenvalue and Eigenvector Differential Sensitivity.- 7 Transition Matrix Differential Sensitivity.- 8 Characteristic Polynomial Differential Sensitivity.- 9 Optimal Control and Performance Sensitivity.- 10 Desensitizing Control.- III Robustness in the Time Domain.- 11 General Stability Bounds in Perturbed Systems.- 12 Robust Dynamic Interval Systems.- 13 Lyapunov-Based Methods for Perturbed Continuous-Time Systems.- 14 Lyapunov-Based Methods for Perturbed Discrete-Time Systems.- 15 Robust Pole Assignment.- 16 Models for Optimal and Interconnected Systems.- 17 Robust State Feedback Using Ellipsoid Sets.- 18 Robustness of Observers and Kalman-Bucy Filters.- 19 Initial Condition Perturbation, Overshoot and Robustness.- 20 Lpn-Stability and Robust Nonlinear Control.- IV Robustness in the Frequency Domain.- 21 Uncertain Polynomials. Interval Polynomials.- 22 Eigenvalues and Singular Values of Complex Matrices.- 23 Resolvent Matrix and Stability Radius.- 24 Robustness Via Singular-Value Analysis.- 25 Generalized Nyquist Stability of Perturbed Systems.- 26 Block-Structured Uncertainty and Structured Singular Value.- 27 Performance Robustness.- 28 Robust Controllers Via Spectral Radius Technique.- V Coprime Factorization and Minimax Frequency Optimization.- 29 Robustness Based on the Internal Model Principle.- 30 Parametrization and Factorization of Systems.- 31 Hardy Space Robust Design.- VI Robustness Via Approximative Models.- 32 Robust Hyperplane Design in Variable Structure Control.- 33 Singular Perturbations. Unmodelled High-Frequency Dynamics.- 34 Control Using Aggregation Models.- 35 Optimum Control of Approximate and Nonlinear Systems.- 36 System Analysis via Orthogonal Functions.- 37 System Analysis Via Pulse Functions and Piecewise Linear Functions.- 38 Orthogonal Decomposition Applications.- A Matrix Algebra and Control.- A.1 Matrix Multiplication.- A.2 Properties of Matrix Operations.- A.3 Diagonal Matrices.- A.4Triangular Matrices.- A.5 Column Matrices (Vectors) and Row Matrices.- A.6 Reduced Matrix, Minor, Cofactor, Adjoint.- A.7 Similar Matrices.- A.8 Some Properties of Determinants.- A.9 Singularity.- A.10 System of Linear Equations.- A.11 Stable Matrices.- A.12 Range Space. Rank. Null Space.- A.13 Trace.- A.14 Matrix Functions.- A.15 Metzler Matrices.- A.16 Projectors.- A.17 Projectors and Rank.- A.18 Projectors. Left-Inverse and Right-Inverse.- A.19 Trigonal Operator.- A.20 Transfer Function Zeros and Initial Step Transients.- A.21 Convolution Sum and TrigonalOperator.- B Eigenvalues and Eigenvectors.- B.1 Right-Eigenvectors.- B.2 Left-Eigenvectors.- B.3 Complex-Conjugate Eigenvalues.- B.4 Modal Matrix of Eigenvectors.- B.5 Complex Matrices.- B.6 Modal Decomposition.- B.7 Linear Differential Equations and Modal Transformations.- B.8 Eigenvalue Assignment.- B.9 Eigensystem Assignment.- B.10 Complete Modal Synthesis.- B.11 Vandermonde Matrix.- B.12 Decompostion into Eigenvectors.- B.13 Properties of Eigenvalues.- B.13.1 Smallest and Largest Eigenvalue of Symmetrie Matrices.- B.13.2 Eigenvalues and Trace.- B.13.3 Maximum Real Part of an Eigenvalue.- B.13.5 Adding the Identity Matrix.- B.13.6 Eigenvalues of Matrix Products.- B.13.7 Eigenvalue of a Matrix Polynomial.- B.13.8 Weyl Inequality.- B.14 Rayleigh's Theorem.- B.15 Eigenvalues and Eigenvectors of the Inverse.- B.16 Dyadic Decomposition (Spectral Representation).- B.17 Spectral Representation of the Exponential Matrix.- B.18 Perron-Frobenius Theorem.- B.19 Multiple Eigenvalues. Generalized Eigenvectors.- B.20 Jordan Canonical Form and Jordan Blocks.- B.21 Special Cases.- B.22 Fundamental Matrix.- B.23 Eigenvector Assignment.- B.23.1 Assignable Subspaces. Parametrization ...

Show more
  • Language:
  • English
  • ISBN:
  • 9783211822999
  • Binding:
  • Hardback
  • Pages:
  • 732
  • Published:
  • September 30, 2002
  • Dimensions:
  • 173x257x41 mm.
  • Weight:
  • 1588 g.
Delivery: 2-3 weeks
Expected delivery: December 20, 2024
Extended return policy to January 30, 2025

Description of Uncertain Models and Robust Control

I Introduction.- 1 Introductory Survey.- 2 Vector Norm. Matrix Norm. Matrix Measure.- 3 FUnctional Analysis, Function Norms and Control Signals.- II Differential Sensitivity. Small-Scale Perturbation.- 4 Kronecker Calculus in Control Theory.- 5 Analysis Using Matrices and Control Theory 79.- 6 Eigenvalue and Eigenvector Differential Sensitivity.- 7 Transition Matrix Differential Sensitivity.- 8 Characteristic Polynomial Differential Sensitivity.- 9 Optimal Control and Performance Sensitivity.- 10 Desensitizing Control.- III Robustness in the Time Domain.- 11 General Stability Bounds in Perturbed Systems.- 12 Robust Dynamic Interval Systems.- 13 Lyapunov-Based Methods for Perturbed Continuous-Time Systems.- 14 Lyapunov-Based Methods for Perturbed Discrete-Time Systems.- 15 Robust Pole Assignment.- 16 Models for Optimal and Interconnected Systems.- 17 Robust State Feedback Using Ellipsoid Sets.- 18 Robustness of Observers and Kalman-Bucy Filters.- 19 Initial Condition Perturbation, Overshoot and Robustness.- 20 Lpn-Stability and Robust Nonlinear Control.- IV Robustness in the Frequency Domain.- 21 Uncertain Polynomials. Interval Polynomials.- 22 Eigenvalues and Singular Values of Complex Matrices.- 23 Resolvent Matrix and Stability Radius.- 24 Robustness Via Singular-Value Analysis.- 25 Generalized Nyquist Stability of Perturbed Systems.- 26 Block-Structured Uncertainty and Structured Singular Value.- 27 Performance Robustness.- 28 Robust Controllers Via Spectral Radius Technique.- V Coprime Factorization and Minimax Frequency Optimization.- 29 Robustness Based on the Internal Model Principle.- 30 Parametrization and Factorization of Systems.- 31 Hardy Space Robust Design.- VI Robustness Via Approximative Models.- 32 Robust Hyperplane Design in Variable Structure Control.- 33 Singular Perturbations. Unmodelled High-Frequency Dynamics.- 34 Control Using Aggregation Models.- 35 Optimum Control of Approximate and Nonlinear Systems.- 36 System Analysis via Orthogonal Functions.- 37 System Analysis Via Pulse Functions and Piecewise Linear Functions.- 38 Orthogonal Decomposition Applications.- A Matrix Algebra and Control.- A.1 Matrix Multiplication.- A.2 Properties of Matrix Operations.- A.3 Diagonal Matrices.- A.4Triangular Matrices.- A.5 Column Matrices (Vectors) and Row Matrices.- A.6 Reduced Matrix, Minor, Cofactor, Adjoint.- A.7 Similar Matrices.- A.8 Some Properties of Determinants.- A.9 Singularity.- A.10 System of Linear Equations.- A.11 Stable Matrices.- A.12 Range Space. Rank. Null Space.- A.13 Trace.- A.14 Matrix Functions.- A.15 Metzler Matrices.- A.16 Projectors.- A.17 Projectors and Rank.- A.18 Projectors. Left-Inverse and Right-Inverse.- A.19 Trigonal Operator.- A.20 Transfer Function Zeros and Initial Step Transients.- A.21 Convolution Sum and TrigonalOperator.- B Eigenvalues and Eigenvectors.- B.1 Right-Eigenvectors.- B.2 Left-Eigenvectors.- B.3 Complex-Conjugate Eigenvalues.- B.4 Modal Matrix of Eigenvectors.- B.5 Complex Matrices.- B.6 Modal Decomposition.- B.7 Linear Differential Equations and Modal Transformations.- B.8 Eigenvalue Assignment.- B.9 Eigensystem Assignment.- B.10 Complete Modal Synthesis.- B.11 Vandermonde Matrix.- B.12 Decompostion into Eigenvectors.- B.13 Properties of Eigenvalues.- B.13.1 Smallest and Largest Eigenvalue of Symmetrie Matrices.- B.13.2 Eigenvalues and Trace.- B.13.3 Maximum Real Part of an Eigenvalue.- B.13.5 Adding the Identity Matrix.- B.13.6 Eigenvalues of Matrix Products.- B.13.7 Eigenvalue of a Matrix Polynomial.- B.13.8 Weyl Inequality.- B.14 Rayleigh's Theorem.- B.15 Eigenvalues and Eigenvectors of the Inverse.- B.16 Dyadic Decomposition (Spectral Representation).- B.17 Spectral Representation of the Exponential Matrix.- B.18 Perron-Frobenius Theorem.- B.19 Multiple Eigenvalues. Generalized Eigenvectors.- B.20 Jordan Canonical Form and Jordan Blocks.- B.21 Special Cases.- B.22 Fundamental Matrix.- B.23 Eigenvector Assignment.- B.23.1 Assignable Subspaces. Parametrization ...

User ratings of Uncertain Models and Robust Control



Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.