We a good story
Quick delivery in the UK

Advances in Subsurface Data Analytics

- Traditional and Physics-Based Machine Learning

About Advances in Subsurface Data Analytics

Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume. Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry Presents detailed case studies of individual machine learning algorithms and optimal strategies in subsurface characterization around the world Offers an analysis of future trends in machine learning in geosciences

Show more
  • Language:
  • English
  • ISBN:
  • 9780128222959
  • Binding:
  • Paperback
  • Pages:
  • 376
  • Published:
  • May 19, 2022
  • Dimensions:
  • 235x192x24 mm.
  • Weight:
  • 806 g.
  In stock
Delivery: 3-5 business days
Expected delivery: May 2, 2025

Description of Advances in Subsurface Data Analytics

Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume.
Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry Presents detailed case studies of individual machine learning algorithms and optimal strategies in subsurface characterization around the world Offers an analysis of future trends in machine learning in geosciences

User ratings of Advances in Subsurface Data Analytics



Find similar books
The book Advances in Subsurface Data Analytics can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.