We a good story
Quick delivery in the UK

Coefficient Inverse Problems for Parabolic Type Equations and Their Application

About Coefficient Inverse Problems for Parabolic Type Equations and Their Application

As a rule, many practical problems are studied in a situation when the input data are incomplete. For example, this is the case for a parabolic partial differential equation describing the non-stationary physical process of heat and mass transfer if it contains the unknown thermal conductivity coefficient. Such situations arising in physical problems motivated the appearance of the present work. In this monographthe author considers numerical solutions of the quasi-inversion problems, to which the solution of the original coefficient inverse problems are reduced. Underground fluid dynamics is taken as a field of practical use of coefficient inverse problems. The significance of these problems for this application domain consists in the possibility to determine the physical fields of parameters that characterize the filtration properties of porous media (oil strata). This provides the possibility of predicting the conditions of oil-field development and the effects of the exploitation. The research carried out by the author showed that the quasi-inversion method can be applied also for solution of "interior coefficient inverse problems" by reducing them to the problem of continuation of a solution to a parabolic equation. This reduction is based on the results of the proofs of the uniqueness theorems for solutions of the corresponding coefficient inverse problems.

Show more
  • Language:
  • English
  • ISBN:
  • 9783110364019
  • Binding:
  • Hardback
  • Pages:
  • 118
  • Published:
  • June 17, 2001
  • Edition:
  • 2014
  • Weight:
  • 345 g.
Delivery: 2-3 weeks
Expected delivery: November 22, 2024

Description of Coefficient Inverse Problems for Parabolic Type Equations and Their Application

As a rule, many practical problems are studied in a situation when the input data are incomplete. For example, this is the case for a parabolic partial differential equation describing the non-stationary physical process of heat and mass transfer if it contains the unknown thermal conductivity coefficient. Such situations arising in physical problems motivated the appearance of the present work.
In this monographthe author considers numerical solutions of the quasi-inversion problems, to which the solution of the original coefficient inverse problems are reduced.
Underground fluid dynamics is taken as a field of practical use of coefficient inverse problems. The significance of these problems for this application domain consists in the possibility to determine the physical fields of parameters that characterize the filtration properties of porous media (oil strata). This provides the possibility of predicting the conditions of oil-field development and the effects of the exploitation.
The research carried out by the author showed that the quasi-inversion method can be applied also for solution of "interior coefficient inverse problems" by reducing them to the problem of continuation of a solution to a parabolic equation. This reduction is based on the results of the proofs of the uniqueness theorems for solutions of the corresponding coefficient inverse problems.

User ratings of Coefficient Inverse Problems for Parabolic Type Equations and Their Application



Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.