We a good story
Quick delivery in the UK

Data Science in Critical Care, an Issue of Critical Care Clinics

About Data Science in Critical Care, an Issue of Critical Care Clinics

In this issue of Critical Care Clinics, guest editors Drs. Rishikesan Kamaleswaran and Andre L. Holder bring their considerable expertise to the topic of Data Science in Critical Care. Data science, the field of study dedicated to the principled extraction of knowledge from complex data, is particularly relevant in the critical care setting. In this issue, top experts in the field cover key topics such as refining our understanding and classification of critical illness using biomarker-based phenotyping; predictive modeling using AI/ML on EHR data; classification and prediction using waveform-based data; creating trustworthy and fair AI systems; and more. Contains 15 relevant, practice-oriented topics including AI and the imaging revolution; designing "living, breathing? clinical trials: lessons learned from the COVID-19 pandemic; the patient or the population: knowing the limitations of our data to make smart clinical decisions; weighing the cost vs. benefit of AI in healthcare; and more. Provides in-depth clinical reviews on data science in critical care, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.

Show more
  • Language:
  • English
  • ISBN:
  • 9780443181931
  • Binding:
  • Hardback
  • Pages:
  • 240
  • Published:
  • September 13, 2023
  • Dimensions:
  • 152x0x229 mm.
  • Weight:
  • 450 g.
Delivery: 2-4 weeks
Expected delivery: December 19, 2024

Description of Data Science in Critical Care, an Issue of Critical Care Clinics

In this issue of Critical Care Clinics, guest editors Drs. Rishikesan Kamaleswaran and Andre L. Holder bring their considerable expertise to the topic of Data Science in Critical Care. Data science, the field of study dedicated to the principled extraction of knowledge from complex data, is particularly relevant in the critical care setting. In this issue, top experts in the field cover key topics such as refining our understanding and classification of critical illness using biomarker-based phenotyping; predictive modeling using AI/ML on EHR data; classification and prediction using waveform-based data; creating trustworthy and fair AI systems; and more. Contains 15 relevant, practice-oriented topics including AI and the imaging revolution; designing "living, breathing? clinical trials: lessons learned from the COVID-19 pandemic; the patient or the population: knowing the limitations of our data to make smart clinical decisions; weighing the cost vs. benefit of AI in healthcare; and more. Provides in-depth clinical reviews on data science in critical care, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.

User ratings of Data Science in Critical Care, an Issue of Critical Care Clinics



Find similar books
The book Data Science in Critical Care, an Issue of Critical Care Clinics can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.