We a good story
Quick delivery in the UK

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

About Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios. The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis ¿ Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms ¿ Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison ¿ Chapter 8.

Show more
  • Language:
  • English
  • ISBN:
  • 9783030969165
  • Binding:
  • Hardback
  • Pages:
  • 152
  • Published:
  • June 11, 2022
  • Edition:
  • 22001
  • Dimensions:
  • 160x14x241 mm.
  • Weight:
  • 401 g.
Delivery: 2-4 weeks
Expected delivery: January 26, 2025
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.
The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:
Part I: Introduction to optimization, benchmarking, and statistical analysis ¿ Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms ¿ Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison ¿ Chapter 8.

User ratings of Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms



Find similar books
The book Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.