We a good story
Quick delivery in the UK

Generative Adversarial Learning: Architectures and Applications

About Generative Adversarial Learning: Architectures and Applications

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs¿ theoretical developments and their applications.

Show more
  • Language:
  • English
  • ISBN:
  • 9783030913922
  • Binding:
  • Paperback
  • Pages:
  • 372
  • Published:
  • February 8, 2023
  • Edition:
  • 23001
  • Dimensions:
  • 155x21x235 mm.
  • Weight:
  • 563 g.
Delivery: 2-4 weeks
Expected delivery: January 25, 2025
Extended return policy to January 30, 2025
  •  

    Cannot be delivered before Christmas.
    Buy now and print a gift certificate

Description of Generative Adversarial Learning: Architectures and Applications

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs¿ theoretical developments and their applications.

User ratings of Generative Adversarial Learning: Architectures and Applications



Find similar books
The book Generative Adversarial Learning: Architectures and Applications can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.