We a good story
Quick delivery in the UK

Learning to Quantify

About Learning to Quantify

This open access book provides an introduction and an overview of learning to quantify (a.k.a. ¿quantification¿), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (¿biased¿) class proportion estimates. The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research. The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (¿macrö) data rather than on individual (¿micrö) data.

Show more
  • Language:
  • English
  • ISBN:
  • 9783031204661
  • Binding:
  • Paperback
  • Pages:
  • 156
  • Published:
  • March 16, 2023
  • Edition:
  • 23001
  • Dimensions:
  • 155x9x235 mm.
  • Weight:
  • 248 g.
Delivery: 2-4 weeks
Expected delivery: November 28, 2024

Description of Learning to Quantify

This open access book provides an introduction and an overview of learning to quantify (a.k.a. ¿quantification¿), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (¿biased¿) class proportion estimates.
The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research.
The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (¿macrö) data rather than on individual (¿micrö) data.

User ratings of Learning to Quantify



Find similar books
The book Learning to Quantify can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.