We a good story
Quick delivery in the UK

Mellin-Transform Method for Integral Evaluation

About Mellin-Transform Method for Integral Evaluation

This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the methodis applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.

Show more
  • Language:
  • English
  • ISBN:
  • 9783031005695
  • Binding:
  • Paperback
  • Pages:
  • 80
  • Published:
  • December 30, 2007
  • Dimensions:
  • 191x5x235 mm.
  • Weight:
  • 169 g.
Delivery: 1-2 weeks
Expected delivery: November 28, 2024

Description of Mellin-Transform Method for Integral Evaluation

This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the methodis applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.

User ratings of Mellin-Transform Method for Integral Evaluation



Find similar books
The book Mellin-Transform Method for Integral Evaluation can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.