We a good story
Quick delivery in the UK

Modeling and Optimization in Space Engineering

- State of the Art and New Challenges

About Modeling and Optimization in Space Engineering

This book presents advanced case studies that address a range of important issues arising in space engineering. An overview of challenging operational scenarios is presented, with an in-depth exposition of related mathematical modeling, algorithmic and numerical solution aspects. The model development and optimization approaches discussed in the book can be extended also towards other application areas.The topics discussed illustrate current research trends and challenges in space engineering as summarized by the following list: . Next Generation Gravity Missions. Continuous-Thrust Trajectories by Evolutionary Neurocontrol. Nonparametric Importance Sampling for Launcher Stage Fallout. Dynamic System Control Dispatch. Optimal Launch Date of Interplanetary Missions. Optimal Topological Design. Evidence-Based Robust Optimization. Interplanetary Trajectory Design by Machine Learning. Real-Time Optimal Control. Optimal Finite Thrust Orbital Transfers. Planning and Scheduling of Multiple Satellite Missions. Trajectory Performance Analysis. Ascent Trajectory and Guidance Optimization. Small Satellite Attitude Determination and Control . Optimized Packings in Space Engineering. Time-Optimal Transfers of All-Electric GEO Satellites Researchers working on space engineering applications will find this work a valuable, practical source of information. Academics, graduate and post-graduate students working in aerospace, engineering, applied mathematics, operations research, and optimal control will find useful information regarding model development and solution techniques, in conjunction with real-world applications.

Show more
  • Language:
  • English
  • ISBN:
  • 9783030105006
  • Binding:
  • Hardback
  • Pages:
  • 478
  • Published:
  • May 21, 2019
  • Edition:
  • 12019
  • Dimensions:
  • 155x235x0 mm.
  • Weight:
  • 898 g.
Delivery: 2-4 weeks
Expected delivery: December 20, 2024

Description of Modeling and Optimization in Space Engineering

This book presents advanced case studies that address a range of important issues arising in space engineering. An overview of challenging operational scenarios is presented, with an in-depth exposition of related mathematical modeling, algorithmic and numerical solution aspects. The model development and optimization approaches discussed in the book can be extended also towards other application areas.The topics discussed illustrate current research trends and challenges in space engineering as summarized by the following list: . Next Generation Gravity Missions. Continuous-Thrust Trajectories by Evolutionary Neurocontrol. Nonparametric Importance Sampling for Launcher Stage Fallout. Dynamic System Control Dispatch. Optimal Launch Date of Interplanetary Missions. Optimal Topological Design. Evidence-Based Robust Optimization. Interplanetary Trajectory Design by Machine Learning. Real-Time Optimal Control. Optimal Finite Thrust Orbital Transfers. Planning and Scheduling of Multiple Satellite Missions. Trajectory Performance Analysis. Ascent Trajectory and Guidance Optimization. Small Satellite Attitude Determination and Control . Optimized Packings in Space Engineering. Time-Optimal Transfers of All-Electric GEO Satellites Researchers working on space engineering applications will find this work a valuable, practical source of information. Academics, graduate and post-graduate students working in aerospace, engineering, applied mathematics, operations research, and optimal control will find useful information regarding model development and solution techniques, in conjunction with real-world applications.

User ratings of Modeling and Optimization in Space Engineering



Find similar books
The book Modeling and Optimization in Space Engineering can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.