We a good story
Quick delivery in the UK

Modeling the Electrochemo-poromechanics of Ionic Polymer Metal Composites and Cell Clusters

About Modeling the Electrochemo-poromechanics of Ionic Polymer Metal Composites and Cell Clusters

This book presents a novel continuum finite deformation framework addressing the complex interactions among electrostatics, species transport, and mechanics in solid networks immersed in a fluid phase of solvent and ions. Grounded on cutting-edge multiphysics theories for soft active materials, the proposed model is primarily applied to ionic polymer metal composites (IPMCs). First, the influence of shear deformation on the IPMC response is analyzed through semi-analytical solutions obtained via the method of matched asymptotic expansions. Second, the novel electrochemo-poromechanical theory is used to predict the curvature relaxation and electric discharge that are observed in IPMC actuation and sensing, respectively, under a sustained stimulus. This newly formulated theory is, in turn, applied to biological cell clusters. Here, important mechanical considerations are integrated into classical bioelectrical models, thus offering novel insights into the interplay of mechanical and electrical signaling in the coordination of developmental processes.

Show more
  • Language:
  • English
  • ISBN:
  • 9783030922788
  • Binding:
  • Paperback
  • Pages:
  • 236
  • Published:
  • January 4, 2023
  • Edition:
  • 23001
  • Dimensions:
  • 155x13x235 mm.
  • Weight:
  • 365 g.
Delivery: 2-4 weeks
Expected delivery: December 18, 2024

Description of Modeling the Electrochemo-poromechanics of Ionic Polymer Metal Composites and Cell Clusters

This book presents a novel continuum finite deformation framework addressing the complex interactions among electrostatics, species transport, and mechanics in solid networks immersed in a fluid phase of solvent and ions. Grounded on cutting-edge multiphysics theories for soft active materials, the proposed model is primarily applied to ionic polymer metal composites (IPMCs). First, the influence of shear deformation on the IPMC response is analyzed through semi-analytical solutions obtained via the method of matched asymptotic expansions. Second, the novel electrochemo-poromechanical theory is used to predict the curvature relaxation and electric discharge that are observed in IPMC actuation and sensing, respectively, under a sustained stimulus. This newly formulated theory is, in turn, applied to biological cell clusters. Here, important mechanical considerations are integrated into classical bioelectrical models, thus offering novel insights into the interplay of mechanical and electrical signaling in the coordination of developmental processes.

User ratings of Modeling the Electrochemo-poromechanics of Ionic Polymer Metal Composites and Cell Clusters



Find similar books
The book Modeling the Electrochemo-poromechanics of Ionic Polymer Metal Composites and Cell Clusters can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.