We a good story
Quick delivery in the UK

Periodic Locally Compact Groups

- A Study of a Class of Totally Disconnected Topological Groups

About Periodic Locally Compact Groups

This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classifi cation and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin's pioneering work generalizing to locally compact groups Iwasawa's early investigations of the lattice of subgroups of abstract groups. Contents Part I: Background information on locally compact groups Locally compact spaces and groups Periodic locally compact groups and their Sylow theory Abelian periodic groups Scalar automorphisms and the mastergraph Inductively monothetic groups Part II: Near abelian groups The definition of near abelian groups Important consequences of the definitions Trivial near abelian groups The class of near abelian groups The Sylow structure of periodic nontrivial near abelian groups and their prime graphs A list of examples Part III: Applications Classifying topologically quasihamiltonian groups Locally compact groups with a modular subgroup lattice Strongly topologically quasihamiltonian groups

Show more
  • Language:
  • English
  • ISBN:
  • 9783110598476
  • Binding:
  • Hardback
  • Pages:
  • 354
  • Published:
  • November 18, 2018
  • Weight:
  • 738 g.
Delivery: 2-3 weeks
Expected delivery: December 13, 2024

Description of Periodic Locally Compact Groups

This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classifi cation and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin's pioneering work generalizing to locally compact groups Iwasawa's early investigations of the lattice of subgroups of abstract groups. Contents
Part I: Background information on locally compact groups
Locally compact spaces and groups
Periodic locally compact groups and their Sylow theory
Abelian periodic groups
Scalar automorphisms and the mastergraph
Inductively monothetic groups
Part II: Near abelian groups
The definition of near abelian groups
Important consequences of the definitions
Trivial near abelian groups
The class of near abelian groups
The Sylow structure of periodic nontrivial near abelian groups and their prime graphs
A list of examples
Part III: Applications
Classifying topologically quasihamiltonian groups
Locally compact groups with a modular subgroup lattice
Strongly topologically quasihamiltonian groups

User ratings of Periodic Locally Compact Groups



Find similar books
The book Periodic Locally Compact Groups can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.