We a good story
Quick delivery in the UK

Rotordynamics of Automotive Turbochargers

About Rotordynamics of Automotive Turbochargers

Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear characteristics of the oil-film bearings, some nonlinear responses of the rotor besides the harmonic response 1X, such as oil whirl, oil whip, and modulated frequencies occur in Waterfall diagram. Additionally, the influences of the surface roughness and oil characteristics on the rotor behavior, friction, and wear are discussed. This book is written by an industrial R&D expert with many years of experience in the automotive and turbocharger industries. The all-in-one book of turbochargers is intended for scientific and engineering researchers, practitioners working in the rotordynamics field of automotive turbochargers, and graduate students in applied physics and mechanical engineering.

Show more
  • Language:
  • English
  • ISBN:
  • 9783319176437
  • Binding:
  • Hardback
  • Pages:
  • 362
  • Published:
  • June 1, 2015
  • Edition:
  • 22015
  • Dimensions:
  • 224x247x25 mm.
  • Weight:
  • 734 g.
Delivery: 2-3 weeks
Expected delivery: November 22, 2024

Description of Rotordynamics of Automotive Turbochargers

Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm.
The broadly interdisciplinary field of turbocharger rotordynamics involves
1) Thermodynamics and Turbo-Matching of Turbochargers
2) Dynamics of Turbomachinery
3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory
4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory
5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation
6) Computation of Nonlinear Responses of a Turbocharger Rotor
7) Aero and Vibroacoustics of Turbochargers
8) Shop and Trim Balancing at Two Planes of the Rotor
9) Tribology of the Bearing Surface Roughness
10) Design of Turbocharger Platforms using the Similarity Laws
The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear characteristics of the oil-film bearings, some nonlinear responses of the rotor besides the harmonic response 1X, such as oil whirl, oil whip, and modulated frequencies occur in Waterfall diagram. Additionally, the influences of the surface roughness and oil characteristics on the rotor behavior, friction, and wear are discussed.
This book is written by an industrial R&D expert with many years of experience in the automotive and turbocharger industries. The all-in-one book of turbochargers is intended for scientific and engineering researchers, practitioners working in the rotordynamics field of automotive turbochargers, and graduate students in applied physics and mechanical engineering.

User ratings of Rotordynamics of Automotive Turbochargers



Find similar books
The book Rotordynamics of Automotive Turbochargers can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.